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Overview

• SM: elegant theoretical construct based on
principles of gauge invariance and renormalizability

I Principles essential for constructing consistent theory
I Don’t tell us what the spectrum of particles or the interactions

are.
I Experimental input required

• This week: develop structure of the matter fields of SM and
the nature of interactions based on experimental observations

• Rely heavily on concepts of symmetry and invariance:
I Strong and Weak interactions don’t have classical analogs
I Unlike EM, don’t have a classical Hamiltonian or Lagrangian

as a starting point for defining the theories
I Use observed symmetry properties to help deduce the the form

of the Lagrangian
I This, together with local gauge invariance, defines the theory



Symmetries and Conservation Laws

• Symmetry of H: Operator R leaves H unchanged

R−1H(t)R = H(t)

• Relationship between symmetries and conservation laws:

i
dQ

dt
= i

∂Q

∂t
+ [Q,H]

If operator has no explicit time dependence

[Q,H] = 0 =⇒< Q > is conserved

• Conserved quantum #’s are associated with operators that
commute with H (Noether’s Theorm)

• Most common examples:
I space-time invariance (translations) ⇐⇒ energy-momentum

conservation
I space-time invariance (rotations) ⇐⇒ angular momentum

conservation



Nature of Hint Determines the Symmetry Properties

• While space-time invariance is a symmetry of all known
interactions, many other particle physics symmetries hold only
for certain Hint

I Some conservation laws apply only for certain interactions
I Strong interactions exhibit the largest amount of symmetry
I EM comes next
I Weak even less

• At low energy (where most particle decays happen)
Strong coupling >> EM >> Weak

• This determines decay hierarchy:
I If a strong decay is possible, it will happen first
I If symmetry prevents strong decay, EM comes next
I Weak comes last



Transformations of Interest in Particle Physics

• Continuous Space-Time Transformations
I Translations
I Rotations
I Extension of Poincare group to include fermionic

anticommuting spinors (SUSY)

• Discrete Transformations
I Space Time Inversion (Parity=P)
I Particle-Antiparticle Interchange (Charge Conjugation=C)
I Time Reversal (T)
I Combinations of these: CP, CPT

• Continuous Transformations of Internal Symmetries
I Isospin
I SU(3)flavor

I SU(3)color

I Weak Isospin
These internal symmetries are all gauge symmetries



Continuous Space Time Transformations

• Translations
I Infinitesmal: D = 1 + δr ∂∂r
I Finite: D = eip∆r

• Rotations
I Infinitesmal: R = 1 + δφ ∂

∂φ

I Finite: R = eiJz∆φ

• Symmetries under continuous transformations lead to additive
conservation laws!

All interactions are invariant under these
global space-time transformations



Intrinsic Spin

• From QM, know particles have intrinsic spin
I Spin 1

2 : electrons, protons, neutrons
I Spin 1: photon

• Simple extension of the algebra used for orbital angular
momentum

I For spin- 1
2 particles

ψ =

(
ψ1

ψ2

)
I Transformation: ψ → eı~σ·n̂θ/2ψ

ψ′ → ψ + δψ

δψ = iθn̂ ·
(
~σ

2
ψ

)

I θ defines the magnitude of the rotation angle in spin space
I n̂ is the axis of rotation
I The Pauli matrices ~σ are a representation of SU(2)



Determining spin of other particles

• Experimentally determined from particle’s decays and
interactions

• Can tell bosons from fermions by whether than can be singly
produced

I Eg ν is fermion since β-decay n→ pe−ν

• Measure rates or angular distributions to further determine
value of spin

I Eg Spin of the π+ is 0:

pp→ π+d

Principle of Detailed Balance: |Mif |2 = |Mfi|2

σ(pp→ π+d) = (2sπ + 1)(2sd + 1)pπ
2

σ(π+d→ pp) =
1

2
(2sp + 1)2pπ

2

( 1
2 due to identical particles in final state)



Discrete Transformations: P, C, T

• These symmetries depend on characteristics of the Lagrangian

• Because EM interaction symmetric under all 3 discrete
transformations, we are familiar with them from Quantum
Mechanics

• Strong interaction also symmetric under C, P and T

• Weak interaction is not:
I Maximum violation of P (totally left handed charged current

interaction)
I Small violation of simulataneous application of C and P

(≈ 10−3 effect)
I All field theories invariant under simultaneous application of C,

P and T (CPT theorem)

• Symmetries under discrete transformations lead to
multiplicative conservation laws!

⇒ Must test whether each symmetry is respected by each interaction



Parity

• Parity operator defined as spatial inversion

(x, y, z) −→ (−x,−y,−z)
P (ψ(~r)) = ψ(−~r)

• Repetition of the operations gives P 2 = 1

I P is a unitary operator with eigenvalues ±1

• If system is an eigenstate of P , its eigenvalue is called the
parity of the system



• Something familiar from atomic physics and quantum
mechanics:

ψ(r, θ, φ) = χ(r)Y`m(θ, φ)

= χ(r)

√
2`+ 1)(`−m)

4π(`+m)!
P`m(cos θ)eımφ

• Spatial inversion:

~r → −~r is equiv to θ → π − θ, φ→ φ+ π.

Thus:

eımφ → eım(φ+π) → (−1)m

P`m(cos θ) → (−1)`+mP`m(cos θ)

Y`m(θ, φ) → (−1)`Y`m(θ, φ)

• Spherical harmonics have parity (−1)`



More on the Parity Operator

• Define UP ≡ P such that UPψ(~r) = ψ(−~r)
• U †P = UP = U−1

P

• How do various operators transform under P?

UP ~r U
−1
P = −~r

UP ~p U
−1
P = −~p

UP ~L U−1
P = +~L

UP ~S U−1
P = +~S

Note:

1. Parity is a multiplicative quantum number

P (ψ = φaφb) = P (φa)P (φb)

2. Spin must be an axial vector since L is an axial vector



Parity and Elementary Particles

• If parity is a good symmetry of Hint, all elementary particles
must be eigenstates of P with eigenvalues ±1.

• To determine if parity is a good symmetry, see if it’s possible
to uniquely define eigenstates for each elementary particle
(independent of reaction)
Note: It is not necessarily true that definition be unique as
long as there is a consistent one

• Experimental Facts:
I Both Strong and EM interactions conserve parity
I Weak interactions do not

We’ll talk more about this in a few weeks, but notice:
I That weak interactions don’t conserve P is clear from fact that
ν are always left-handed and ν are always right handed.



Elementary Particles Have Intrinsic Parity

• The Photon
I Electric current is a vector not an axial vector so P (γ) = −1

• Dirac Particles
I Dirac Eq and definition of vector current require particle and

anti-particle to have opposite parity
I Since the are always pair produced, it is a matter of convention

as to which is + and which is −
• Pions

I Pions are bosons with spin 0 and three charge states

π+, π0, π−

I Since bosons, they can be produced singly:

P can be measured by studying reactions

I See next two pages for details



Parity of the Charged Pion

• Study π−d→ nn
I π capture from s-wave (mesonic x-ray spectrum and rate)
I Spin(d)=1 and Spin(π)=0 and L = 0 so J = 1 for initial state
I What are the possibilities for the nn state?

L = 0 S = 1

L = 1 S = 0, 1, 2

L = 2 S = 1

I Fermi statistics: nn w.f. must be anti-symmetric

Symmetry: (−1)`(−1)s+1

I Only L = 1, S = 1 state is possible
I Thus nn are in a 3P1 state with parity (−1)` = −1
I To determine P of deuteron: p and n have P = 1. Also, we

know L = 0 so deuteron has P = 1

⇒ π− has P = −1 (pseudoscalar)



Parity of the Neutral Pion

• Main decay mode π0 → γγ
I But to measure P in this mode, must measure γ polarization

• Instead use π0 → (e+e−)(e+e−) (BR∼ 10−4)
I Look at polarization planes of e+e− pairs: Two possible forms

ψ ∝ (ε1 · ε2) = cosφ scalar

ψ ∝ (ε1 × ε2) · ~k = sinφ pseudoscalar

PRL 100, 182001 (2008)

⇒ π0 has P = −1 (pseudoscalar)



Charge Conjugation (C)

• C reverses the sign of the charge and magnetic moment and
leaves spatial coordinates unchanged

• Maxwell’s eq are intrinsically invariant under C

• Strong interactions also conserve C, but weak interactions
don’t

• C really changes particle → antiparticle (thus lepton and
baryon number change sign under C)

• C is more difficult to study than P because elementary
particles aren’t in general eigenstates of C

C
∣∣π+

〉
= η

∣∣π−〉 6= ± ∣∣π+
〉



C for the Neutral Pion

C
∣∣π0
〉

= η
∣∣π0
〉

with |η|2 = 1 so η = ±1

• To find the sign, note that EM fields are produced from
charges

• Changing sign of charge changes direction of ~E

• Photon has C = −1

• Since π0 → γγ, π0 has C = 1

• Consequence: π0 → 3γ is forbidden

π0 → 3γ

π0 → 2γ
< 3.1× 10−8 90% cl

Although charged particles aren’t eigenstates of C, C invariance is
still useful for relating reaction rates

M(ab→ cd) =M(ab→ cd)



Time Reversal (T)

• Operator T turns t→ −t
• Tested experimentally for strong interactions by applying

principle of detailed balance

• T is also a good symmetry of EM. Small T violations in Weak
interaction (more in a few weeks)

• A good test of Time reversal symmetry: the neutron EDM

The CPT Theorm

• All interactions that can be described by quantum field theory
are invariant under the combined operations of C, P and T:
CPT

• We will see in a few weeks that weak interactions have small
CP non-invariance (as well as T invariance)



The Hadronic Spectrum

• 3 generations of leptons (e, µ, τ and respective ν)

• Hundreds of hadrons:
I Are they fundamental?
I Look for patterns in mass, spin, charge
I Rules to relate interaction and decay rates

• Hadrons are composite particles made of quarks
I Spectrum of particles analog of period table of elements
I αs large at low q2 → theory not perturbative
I Can’t calculate wave functions of the quark bound states
I Heavy quark bound states probe QCD potential (week 8)

• In 1960’s no one knew whether quarks were real or just
mathematical constructs

I We’ll use modern knowledge to inform our discussion and
terminology



Classification of Hadrons (I)

• Mesons (integer spin) vs Baryons (half integer spin)
I Baryons must be pair produced, mesons can be produced singly

• Baryons
I Earliest examples: p and n
I Fact that both appear to see same nuclear force and that the

masses are so close together (mp = 938.20 MeV, mn = 939.57
MeV) make it natural to think of them as 2 states of same
particle: the nucleon N

I Define isospin (with same algebra as spin: SU(2)). Then N
has I = 1

2 :

N ≡
(
u
d

)
p =

∣∣∣∣12 1

2

〉
n =

∣∣∣∣12 − 1

2

〉



Classification of Hadrons (II)

• Mesons
I Earliest example: The pions
I Three charges π+, π0 ,π− so I = 1:

Π ≡

 π+

π0

π−


π+ = |11〉
π0 = |10〉
π− = |1− 1〉

• Note: For nucleon Q = Iz + 1
2 while for pion Q = Iz

These are special cases of a more general rule we’ll get to soon



Does the algebra of SU(2) hold?: πN scattering

• Use isospin to relate reaction rates

• One matrix element per value of ITot
• I = 1⊗ 1

2
⇒ ITot =

3
2

or 1
2

so two indep matrix elements:

M 1
2
≡
〈

1

2

∣∣∣∣H ∣∣∣∣ 1
2

〉
M 3

2
≡
〈

3

2

∣∣∣∣H ∣∣∣∣ 3
2

〉

• Examples of decomposition

pπ
+

=

∣∣∣∣ 3
2

3

2

〉

pπ
0

=

√
2

3

∣∣∣∣ 3
2

1

2

〉
−

√
1

3

∣∣∣∣ 1
2

1

2

〉

• Thus

σ(π+p→ π+p) ∼
∣∣∣M 3

2

∣∣∣2
σ(π+n→ π+n) ∼

∣∣∣∣1

3
M 3

2
+

2

3
M 1

2

∣∣∣∣2
σ(π−p→ π0n) ∼

∣∣∣∣∣
√

2

3
M 3

2
−
√

2

3
M 1

2

∣∣∣∣∣
2



More on πN scattering
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√s GeV
πd

πp
1.2 2 3 4 5 6 7 8 9 10 20 30 40

2.2 3 4 5 6 7 8 9 10 20 30 40 50 60

π+ p total

π+ p elastic

π∓ d total

π− p total

π− p elastic

• Large bumps: “resonances”

• Eg: near 1236 MeV

I Width ∼ 120 MeV ⇒ short
lifetime: ∆E∆t ∼ ~:

∆t ∼
~

∆E

∼
6.58× 10−22 MeV s

120 MeV

∼ 5× 10−24 s

• This is the ∆

I Four states: I = 3/2:
∆++,∆+, ∆0,∆−

I There is NO ∆−−



Strangeness (I)

• In 1950’s a new class of hadrons seen
I Produced in πp interaction via Strong Interaction
I But travel measureable distance before decay, so decay is weak

Why should this happen? There must be quantum number
conserved in multihadron production that cannot be
conserved in single hadron decay.



Strangeness (II)

• Example:
π−p→ Λ0K0

I Λ0 → pπ− with lifetime τ = 2.6× 10−10 sec
I K0 → π+π− with lifetime τ = 0.8958× 10−10 sec

• Assign a new quantum number called strangeness to the Λ
and K0

• By convention Λ has S = −1 and K0 has S = 1 (an
unfortunate choice, but we are stuck with it)

• Strangeness is an additive quantum number



Strangeness and IZ

• We’ve already seen that within an isospin multiplet, different
Iz have different charge

• Can generalize this observation for all light quark (u,d,s)
multiplets:

Q = Iz +
B + S

2

Define hypercharge Y ≡ B + S

• This is called the Gell Mann-Nishijima Eq

• Note: Because Q depends on I3, EM interactions cannot
conserve isospin, but do conserve I3

I Analogous to the Zeeman effect, where a B field in z direction
destroys conservation of angular momentum but leaves Jz as a
good quantum number

• α = 1/137 while αS ≈ 1.
I Effects of isospin non-conservation are small and can be

treated as perturbative correction to strong interaction



Group Theory Interpretation (SU(3))

0−+ (Pseudoscalar Mesons)

• Particles with same spin, parity
and charge congugation
symmetry described as multiplet

I Different values of Iz and Y

and hence different values of

charge and strangeness

• Raising and lowering operators
to navigate around the multiplet

• Gell Man and Zweig: Patterns
of multiplets explained if all
hadrons were made of quarks

I Mesons: qq 3⊗ 3 = 1⊕ 8
I Baryons:

qqq 3⊗3⊗3 = 1⊕8⊕8⊕10

• In those days, 3 flavors
(extension to 6 discussed later)


